Quadratics
Difference of Squares
To find out if a standard equation is a difference of squares, its middle terms cancel out. This means that the the b value is 0. This also means that it must be a negative c because the two terms must cancel out but still multiply to a negative number. (ax²+bx+c)
For Example
The equation 4x²-25 is a difference of squares.
Step 1: The a value and c value are both squares
√4 = 2 √25 = 5
Step 2: The Middle term is 0
4x²-25 = 4x² + 0x-25
Step 3: The c value is negative
4x² - 25
Step 4: Using the square root of a and c, create the factored form equation. As a result of the c value being negative, the factored form must have the square root of c in both postive and negative forms. By this, the middle term cancels out
4x²-25
√4 = 2 √25 = 5
(2x+5) (2x-5)
Question
If the standard form equation of a difference of squares is x²-9, what is it in factored form?
Solution
Step 1: The a value and c value are both squares
√x² = x √9 =
Step 2: The Middle term is 0
x²-9 = x²+0x+-9
Step 3: The c value is negative
x² - 9
Step 4: Using the square root of a and c, create the factored form equation. As a result of the c value being negative, the factored form must have the square root of c in both postive and negative forms. By this, the middle term cancels out
x²-9
√x² = x √9 = 3
(x+3) (x-3)